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Compile to Eliminate Context Switches Compile to Eliminate Context Switches 
Where They Limit PerformanceWhere They Limit Performance

• Create efficient implicitly multithreaded (integrated) 
functions

• Use a compiler at design time to create the functions 
(compile for low-cost concurrency)

• Build the task/function scheduling decisions into the 
scheduler (if used) or the ISRs

Break down the barrier between task scheduling (scheduler 
and dispatcher) and instruction scheduling (compiler)
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Hardware to Software MigrationHardware to Software Migration
• What is it?

– Replacing hardware components 
with  software functions on a
conventional CPU (uniprocessor) 

• Why do it? 
– Custom HW is too expensive unless 

production volume is high (1M$ mask set)
– Cost, size, reliability, weight, power
– Function availability, time to market, 

field upgrades
• Who does it? 

– Everyone
• Why do they hate it so passionately?

– Code in assembler and it takes forever to 
develop

• Tools are real-time-ambivalent
– Code in C and you can’t get decent 

performance, but you finish coding sooner
• Slow context switches and scheduling
• Tools are real-time-oblivious

Cost of Microcontroller Throughput
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Software Thread Integration for Software Thread Integration for 
Hardware to Software MigrationHardware to Software Migration

• Efficiency improved in two dimensions
– Integrated threads more efficient, can use slower processor
– Integration process automated, can improve time to market

• Simplifies hardware to software migration (HSM)
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Procedure
Code
Conditional
Loop

Thread RepresentationThread Representation

• CDG’s hierarchical structure simplifies integration
– Vertical = conditional nesting, Horizontal = execution order
– Summary information at each level

• Our Thrint back-end compiler operates on CDGs of host, guest threads
– Annotates host with execution time predictions.
– Moves guest code into host, enforcing ctl/data/time dependencies

• Find gap, or else descend into subgraph
• Have code transformations to handle conditionals & loops
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Integration
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What About Interrupts And Other ShortWhat About Interrupts And Other Short--Laxity Tasks? Laxity Tasks? 

• STI disables interrupts while 
integrated threads run

• What if some host threads (e.g. 
ISRs) can’t be delayed until the 
integrated thread finishes?
– In STIGLitz example: interrupts 

are disabled for one field of 
video (16.167 ms)

• Solution
– Use polling servers to service 

each non-deferrable thread (e.g. 
UART ISR)

• Polling Servers:
– Created from the original 

ISR/routine by copying the 
body.

– Insert guard code which checks 
whether the ISR/routine needs 
to execute.
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What about Frequent Guests and Long Hosts?What about Frequent Guests and Long Hosts?

• What if much of the idle 
time comes from short guest 
threads which run often?

• Amount of idle time in one 
instance of guest is not 
sufficient for the entire host 
thread to complete.

• Guest triggers before the 
previous integrated version 
finished.

• Solution
– Break host thread into 

segments which fit into 
idle time and integrate 
guest in multiple times

– Execute host one 
segment at a time.
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Resulting Expansion of STI Design SpaceResulting Expansion of STI Design Space

• Loosened the 
constraints on 
response time and 
idle time 
characteristics

• Now able to handle 
more demanding 
real-time applications

WCET for Host 
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HSM Application Target: HSM Application Target: 
Video Signal Generation with STIGLitzVideo Signal Generation with STIGLitz

• Goals
– Generate monochrome NTSC video refresh signal very cheaply
– Also provide high-speed (115 kbps) serial I/O 
– Use software on a low-cost 20 MHz processor assisted by simple, cheap hardware 

• $3 20 MHz 8 bit Atmel AVR MCU (128kB ROM, 4kB RAM)
• 64k x 8 SRAM
• Two 4-bit shift registers
• Two 4-bit clock dividers
• One hex inverter
• Four-resistor DAC
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NTSC Signal:Idle Time DistributionNTSC Signal:Idle Time Distribution

Vertical Sync.H-Sync VideoH-Sync Video …… H-Sync Video

Idle-time yielded to run 
unintegrated host 

threads. 

Idle-time between 
pixel rendering 
reclaimed to run 

integrated host work.

Idle-time between 
signal transitions is 

reclaimed to run 
dispatcher and do co-

routine calls.
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Performance IssuesPerformance Issues

• Display refresh (pump out byte of video every 800 ns) has a hard real-
time requirement

• Idle time between pixel-banging of video refresh accounts for 75% of 
CPU time during video data portion, 59% overall

• Reclaim that idle time by running integrated threads which refresh 
display and render graphics primitives simultaneously (time too short 
for context switch)

Video
Data

ld r19, X+
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CPU
Activity
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Software ArchitectureSoftware Architecture

• STIGLitz Graphics library
– APIs for rendering lines, 

circles, sprites, text, polygons, 
GIF decoder.

– Fixed point math
• NTSC video driver 

– Implemented as  
Timer/Counter ISR.

– ISR does one field of the NTSC 
frame.

– 16 and 20 MHz versions.
– 2 bpp 256x240 frame buffer

• 115.2 kbaud serial port
– one character per 87 us
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Steps in STI: Source Code PreparationSteps in STI: Source Code Preparation
• Structure program (C) to accumulate work to perform in 

integrated functions
• Write functions (C) to be integrated
• Compile to assembly code, partitioning register file for 

functions to be integrated (-ffixed)
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Steps in STI: Analysis and Integration PlanningSteps in STI: Analysis and Integration Planning
• Parse assembly code to form CFG and then CDG
• Perform tree-based static timing analysis
• Pad away timing variations from conditionals with nops or nop loops 
• Perform basic data-flow analysis to identify loop-control variables and 

possibly iteration counts
• Compare duration of guest functions with maximum allowed latency

for ISRs and other short-laxity host tasks
– Create polling servers to handle these as needed

• Compare duration of host functions with amount of idle time time in 
guest functions, considering minimum period for guest
– Break long host functions into segments which fit into guest functions’ idle 

time minus polling servers minus two context switch times.
• Define target times for regions in guest code which are time-critical
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Steps in STI: Integration Steps in STI: Integration WHICH WHICH 
REFERENCES TO ADD?REFERENCES TO ADD?• Note: conditionals have been padded away previously

• Single guest events
– Move guest code to execute at proper times within host code

• Replicate guest code into conditionals
• Split and peel loops and insert guest code
• Guard guest code within loop to trigger on given iteration

• Looping guest events
– Peel off guest function loop iterations which don’t overlap with host loops

• Integrate as single guest events
– Fuse loop iterations which do overlap

• Fuse loop control tests
– Unroll loop to match idle time in guest loop with work in host loop

• Create clean-up loops to perform remaining iterations
• Redo static timing analysis and verify correct timing
• Recreate assembly file
• Compile, link, download and run!
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Threads and IntegrationThreads and Integration
• Threads

– UART Transmit polling 
server shifts data from tx
queue to UART

– UART Receive polling server 
transfers data from UART to 
rx queue

– PumpPixel outputs a byte of 
packed video data every 16 cycles

• Timing Analysis
– 63.5 us per scan line: 1270 cycles
– Line counting and other overhead: -200 cycles
– Dispatcher and context switching: -275 cycles
– Time for UART polling servers: -132 cycles 
– Remaining time per line refreshed: ~650 cycles

• Integrate 650 cycles of a host function per segment
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Performance Improvement and Code ExpansionPerformance Improvement and Code Expansion
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ConclusionsConclusions
• Enlarging the application space for STI

– Low-laxity threads (and ISRs)
– Frequent, short guest threads

• Demonstrated by integrating STIGLitz with video 
generation:
– In use in NCSU’s Embedded System Design course.
– For more information look at our upcoming December 2003 

Circuit Cellar magazine.
– Can download source code and PCB design from 

www.cesr.ncsu.edu/agdean/stiglitz
• Thank you
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AppendicesAppendices
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Detail: Detail: 
Register File Partitioning vs. PerformanceRegister File Partitioning vs. Performance

• Problem: STI requires that integrated threads share the register file
• Trade-off:

• Code compiled to fit into fewer registers switches contexts faster
– Dispatcher switches contexts roughly every 900 cycles
– Two context switches for one register take 12 cycles

• Code compiled to fit into fewer registers runs slower
– More variables must remain in memory

• Goal: Squeeze pre-integrated threads into as few registers as practical
• Method: Determine sensitivity of the host threads’ execution time to the 

number of registers available 
– Divide AVR registers into three classes:

• Pointer registers (r26-r31)
• Immediate-operand capable registers (r16-r25)
• Other registers (r0-r15)

– Analyze DrawSprite, DrawLine, DrawCircle functions
– Limit registers available to the register allocator through gcc’s –ffixed 

option.
– Measure execution time using an on-chip timer/counter
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ResultsResults
• Measurements

– DrawLine and DrawCircle not very 
sensitive

– DrawSprite very sensitive
– Strange speed-up when excluding 

one pointer register
• Design decisions

– DrawLine and DrawCircle
• Exclude eight “other" registers 

and two pointer registers
• Use 22 registers
• Each context switch: 132 cycles

– DrawSprite
• Exclude only one “other” 

register and two pointer registers 
• Use 29 registers
• Each context switch: 174 cycles
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