
1

Building Demanding Hard RealBuilding Demanding Hard Real--Time Systems Time Systems
with Software Thread Integrationwith Software Thread Integration

Shobhit Kanaujia, Benjamin Welch,
Adarsh Seetharam, Deepaksrivats Thirumalai,

Alex Dean
alex_dean@ncsu.edu

Center for Embedded Systems Research
Department of Electrical and Computer Engineering

North Carolina State University
www.cesr.ncsu.edu/agdean/stiglitz

2

Compile to Eliminate Context Switches Compile to Eliminate Context Switches
Where They Limit PerformanceWhere They Limit Performance

• Create efficient implicitly multithreaded (integrated)
functions

• Use a compiler at design time to create the functions
(compile for low-cost concurrency)

• Build the task/function scheduling decisions into the
scheduler (if used) or the ISRs

Break down the barrier between task scheduling (scheduler
and dispatcher) and instruction scheduling (compiler)

3

Hardware to Software MigrationHardware to Software Migration
• What is it?

– Replacing hardware components
with software functions on a
conventional CPU (uniprocessor)

• Why do it?
– Custom HW is too expensive unless

production volume is high (1M$ mask set)
– Cost, size, reliability, weight, power
– Function availability, time to market,

field upgrades
• Who does it?

– Everyone
• Why do they hate it so passionately?

– Code in assembler and it takes forever to
develop

• Tools are real-time-ambivalent
– Code in C and you can’t get decent

performance, but you finish coding sooner
• Slow context switches and scheduling
• Tools are real-time-oblivious

Cost of Microcontroller Throughput

0

10

20

30

40

50

60

1995 1996 1997 1998 1999 2000 2001 2002
Year

Pr
ic

e
pe

r M
IP

S
(U

S
¢)

ROM

I/O

CPU RAM CPU RAMROM

I/O

4

Software Thread Integration for Software Thread Integration for
Hardware to Software MigrationHardware to Software Migration

• Efficiency improved in two dimensions
– Integrated threads more efficient, can use slower processor
– Integration process automated, can improve time to market

• Simplifies hardware to software migration (HSM)

Real-Time
Guest

(Primary)
Thread

Hardware
Function

Host
(Secondary)

Thread

Idle
Time

Integrated
ThreadGuest

Schedule
(Execution

Time Reqts.)

Idle Time
Reclaimed

Software
Thread

Integration

5

Procedure
Code
Conditional
Loop

Thread RepresentationThread Representation

• CDG’s hierarchical structure simplifies integration
– Vertical = conditional nesting, Horizontal = execution order
– Summary information at each level

• Our Thrint back-end compiler operates on CDGs of host, guest threads
– Annotates host with execution time predictions.
– Moves guest code into host, enforcing ctl/data/time dependencies

• Find gap, or else descend into subgraph
• Have code transformations to handle conditionals & loops

Control
Dependence

Graph
(Ferrante,J. et al

1987.)

Conditional
Nesting

Execution
Order

6

Integration

ThrintThrint

foo.s

foo.int.sfoo.id

Data-flow
Analysis

Control-flow
Analysis

Static Timing
Analysis

Integration
Analysis

XVCG GnuPlot

7

What About Interrupts And Other ShortWhat About Interrupts And Other Short--Laxity Tasks? Laxity Tasks?

• STI disables interrupts while
integrated threads run

• What if some host threads (e.g.
ISRs) can’t be delayed until the
integrated thread finishes?
– In STIGLitz example: interrupts

are disabled for one field of
video (16.167 ms)

• Solution
– Use polling servers to service

each non-deferrable thread (e.g.
UART ISR)

• Polling Servers:
– Created from the original

ISR/routine by copying the
body.

– Insert guard code which checks
whether the ISR/routine needs
to execute.

Worst case
execution
time of

integrated
thread ==
smallest

guaranteed
response

time

La
xi

ty
 fo

r
H

os
t T

hr
ea

d
(m

ax
. l

at
en

cy
 a

llo
w

ed
)

Previously STI
couldn’t handle

this region

WCET for Host Thread

Required Response time for ISR was not met

Integrated Thread Duration

ISR triggered

Host

Guest

8

What about Frequent Guests and Long Hosts?What about Frequent Guests and Long Hosts?

• What if much of the idle
time comes from short guest
threads which run often?

• Amount of idle time in one
instance of guest is not
sufficient for the entire host
thread to complete.

• Guest triggers before the
previous integrated version
finished.

• Solution
– Break host thread into

segments which fit into
idle time and integrate
guest in multiple times

– Execute host one
segment at a time.

WCET for Host
Thread

La
xi

ty
 fo

r
H

os
t T

hr
ea

d
(m

ax
. l

at
en

cy
 a

llo
w

ed
)

Minimum guest thread
period minus

maximum guest
thread work

Previously STI couldn’t handle
this region

Integrated Thread Duration

Guest Period

Second guest instance arrives
before the

integrated thread finished execution

Host

Guest

9

Resulting Expansion of STI Design SpaceResulting Expansion of STI Design Space

• Loosened the
constraints on
response time and
idle time
characteristics

• Now able to handle
more demanding
real-time applications

WCET for Host
Thread

La
xi

ty
 fo

r
H

os
t T

hr
ea

d
(m

ax
. l

at
en

cy
 a

llo
w

ed
)

10

HSM Application Target: HSM Application Target:
Video Signal Generation with STIGLitzVideo Signal Generation with STIGLitz

• Goals
– Generate monochrome NTSC video refresh signal very cheaply
– Also provide high-speed (115 kbps) serial I/O
– Use software on a low-cost 20 MHz processor assisted by simple, cheap hardware

• $3 20 MHz 8 bit Atmel AVR MCU (128kB ROM, 4kB RAM)
• 64k x 8 SRAM
• Two 4-bit shift registers
• Two 4-bit clock dividers
• One hex inverter
• Four-resistor DAC

Byte Clock
Divider

Pixel Clock
Divider

4-bit
Shift Register

4-bit
Shift Register

64 kByte
SRAM

Latch
Sh

ift

Lo
ad

MCU Clock

Sync

Clear

ATmega128
MCU

NTSC
Video Out

115 kbps
serial port

11

NTSC Signal:Idle Time DistributionNTSC Signal:Idle Time Distribution

Vertical Sync.H-Sync VideoH-Sync Video …… H-Sync Video

Idle-time yielded to run
unintegrated host

threads.

Idle-time between
pixel rendering
reclaimed to run

integrated host work.

Idle-time between
signal transitions is

reclaimed to run
dispatcher and do co-

routine calls.

12

Original Processor
Utilization

Foreground
processing
Display
refresh & sync
Wasted
capacity

Performance IssuesPerformance Issues

• Display refresh (pump out byte of video every 800 ns) has a hard real-
time requirement

• Idle time between pixel-banging of video refresh accounts for 75% of
CPU time during video data portion, 59% overall

• Reclaim that idle time by running integrated threads which refresh
display and render graphics primitives simultaneously (time too short
for context switch)

Video
Data

ld r19, X+
out PORTE, r19

CPU
Activity

64 iterations at 800 ns each

13

Software ArchitectureSoftware Architecture

• STIGLitz Graphics library
– APIs for rendering lines,

circles, sprites, text, polygons,
GIF decoder.

– Fixed point math
• NTSC video driver

– Implemented as
Timer/Counter ISR.

– ISR does one field of the NTSC
frame.

– 16 and 20 MHz versions.
– 2 bpp 256x240 frame buffer

• 115.2 kbaud serial port
– one character per 87 us

Other Graphics
Primitive Rendering

FunctionsV
Other Graphics

Primitive Rendering
FunctionsV

DrawHLine
PumpPixel

USART

DrawVLine
PumpPixel

USART

DrawCircle
PumpPixel

USART

Frame Buffer

Graphics Application

PumpPixel
USART

Other Graphics
Primitive Rendering

Functions

Output Port and Video
Digital to Analog Converter

Output Port and Video
Digital to Analog Converter

Refresh
Pixels

Rendering
Pixels

Graphics Primitive
Arguments

NTSC
Video Out

Dispatcher in periodic
ISR selects one of these

functions to refresh
display

DrawXLine
PumpPixel

USART

…

Dispatcher
Integrated function: UART service,

video refresh and graphics rendering

NTSC
ISR

VideoB
ac

k
P

or
ch

H
S

yn
c

Fr
on

t P
or

ch

63.5 us

Coroutine
Call

Coroutine
Call

14

Steps in STI: Source Code PreparationSteps in STI: Source Code Preparation
• Structure program (C) to accumulate work to perform in

integrated functions
• Write functions (C) to be integrated
• Compile to assembly code, partitioning register file for

functions to be integrated (-ffixed)

15

Steps in STI: Analysis and Integration PlanningSteps in STI: Analysis and Integration Planning
• Parse assembly code to form CFG and then CDG
• Perform tree-based static timing analysis
• Pad away timing variations from conditionals with nops or nop loops
• Perform basic data-flow analysis to identify loop-control variables and

possibly iteration counts
• Compare duration of guest functions with maximum allowed latency

for ISRs and other short-laxity host tasks
– Create polling servers to handle these as needed

• Compare duration of host functions with amount of idle time time in
guest functions, considering minimum period for guest
– Break long host functions into segments which fit into guest functions’ idle

time minus polling servers minus two context switch times.
• Define target times for regions in guest code which are time-critical

16

Steps in STI: Integration Steps in STI: Integration WHICH WHICH
REFERENCES TO ADD?REFERENCES TO ADD?• Note: conditionals have been padded away previously

• Single guest events
– Move guest code to execute at proper times within host code

• Replicate guest code into conditionals
• Split and peel loops and insert guest code
• Guard guest code within loop to trigger on given iteration

• Looping guest events
– Peel off guest function loop iterations which don’t overlap with host loops

• Integrate as single guest events
– Fuse loop iterations which do overlap

• Fuse loop control tests
– Unroll loop to match idle time in guest loop with work in host loop

• Create clean-up loops to perform remaining iterations
• Redo static timing analysis and verify correct timing
• Recreate assembly file
• Compile, link, download and run!

17

Threads and IntegrationThreads and Integration
• Threads

– UART Transmit polling
server shifts data from tx
queue to UART

– UART Receive polling server
transfers data from UART to
rx queue

– PumpPixel outputs a byte of
packed video data every 16 cycles

• Timing Analysis
– 63.5 us per scan line: 1270 cycles
– Line counting and other overhead: -200 cycles
– Dispatcher and context switching: -275 cycles
– Time for UART polling servers: -132 cycles
– Remaining time per line refreshed: ~650 cycles

• Integrate 650 cycles of a host function per segment

PumpPixel Tx

UART Polling
Servers

Rx

Graphics Primitives
Rendering

PumpPixel_UART

DrawHLine_PumpPixel_UART

DrawXLine_PumpPixel_UART

Service_DrawDiagonalLine_Queue

Service_DrawXLine_Queue

Service_DrawHLine_Queue

Integrated functions with polling servers

Video
Refresh

…
DrawDLine_PumpPixel_UART

…

Segments

0
1
2

0
1

7
8

18

0

5

10

15

20

No
Integration

Int. -
Horizontal

Line

Int. -
Vertical

Line

Int. -
Diagonal

Line

Int. - X-
Major Line

M
IP

S
 U

se
d

Wasted
capacity

Integrated
rendering

UART polling
servers

Dispatcher
w/context
switching
Display
refresh &
sync
Foreground
process ing

New Utilization of ProcessorNew Utilization of Processor

19

Performance Improvement and Code ExpansionPerformance Improvement and Code Expansion

H-Line V-Line D-Line X-Major-
Line

11.8

13.5

12.0

4.0

0

5

10

15

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (1
/ti

m
e) Discrete

Integrated

0

20000

40000

60000

80000

100000

120000

Si
ze

 (b
yt

es
)

O
rig

in
al

In
te

gr
at

ed

ROM
RAM

20

ConclusionsConclusions
• Enlarging the application space for STI

– Low-laxity threads (and ISRs)
– Frequent, short guest threads

• Demonstrated by integrating STIGLitz with video
generation:
– In use in NCSU’s Embedded System Design course.
– For more information look at our upcoming December 2003

Circuit Cellar magazine.
– Can download source code and PCB design from

www.cesr.ncsu.edu/agdean/stiglitz
• Thank you

21

AppendicesAppendices

22

Detail: Detail:
Register File Partitioning vs. PerformanceRegister File Partitioning vs. Performance

• Problem: STI requires that integrated threads share the register file
• Trade-off:

• Code compiled to fit into fewer registers switches contexts faster
– Dispatcher switches contexts roughly every 900 cycles
– Two context switches for one register take 12 cycles

• Code compiled to fit into fewer registers runs slower
– More variables must remain in memory

• Goal: Squeeze pre-integrated threads into as few registers as practical
• Method: Determine sensitivity of the host threads’ execution time to the

number of registers available
– Divide AVR registers into three classes:

• Pointer registers (r26-r31)
• Immediate-operand capable registers (r16-r25)
• Other registers (r0-r15)

– Analyze DrawSprite, DrawLine, DrawCircle functions
– Limit registers available to the register allocator through gcc’s –ffixed

option.
– Measure execution time using an on-chip timer/counter

23

ResultsResults
• Measurements

– DrawLine and DrawCircle not very
sensitive

– DrawSprite very sensitive
– Strange speed-up when excluding

one pointer register
• Design decisions

– DrawLine and DrawCircle
• Exclude eight “other" registers

and two pointer registers
• Use 22 registers
• Each context switch: 132 cycles

– DrawSprite
• Exclude only one “other”

register and two pointer registers
• Use 29 registers
• Each context switch: 174 cycles

Draw_Circle Sensitivity to Register Exclusion

0.9

1

1.1

1.2

1.3

0 2 4 6 8 10 12

Total Registers Excluded

N
or

m
al

iz
ed

 R
un

 T
im

e Draw Circle - Immediate
Draw Circle - Pointer
Draw Circle - Other

Draw_Line Sensitivity to Register Exclusion

0.9
1

1.1
1.2
1.3

0 2 4 6 8 10 12

Total Registers Excluded

N
or

m
al

iz
ed

 R
un

 T
im

e

DrawLine - Pointer
DrawLine - Other
DrawLine - Immediate

Draw_Sprite

0
1
2
3
4
5

0 5 10 15

Registers_removed

N
or

m
al

iz
ed

 R
un

 T
im

e

Draw Sprite - Immediate

Draw Sprite - Pointer

Draw Sprite - Other

24

Code SizeCode Size

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

gl
ib

.o
sd

xl
_i

nt
.in

t.o
fix

ed
.o

sd
c_

in
t.i

nt
.o

gl
ib

_t
es

t.o
sd

dl
_i

nt
.in

t.o
sd

hl
_i

nt
.in

t.o
nt

sc
.o

sd
vl

_i
nt

.in
t.o

gl
ib

_G
IF

D
ec

od
e.

o
m

ai
n.

o
de

m
o.

o
di

sp
at

ch
er

.o
sd

s_
in

t.i
nt

.o
sd

so
vr

_i
nt

.in
t.o

sd
yl

_i
nt

.in
t.o

xf
or

m
2d

.o
gr

ap
h.

o
te

xt
_b

m
.o

Si
ze

 (b
yt

es
)

 text
 data
 bss

25

26

Software Thread Integration PublicationsSoftware Thread Integration Publications
• Welch, B., Kanaujia, S., and Dean, A. “Extending STI for Demanding Hard Real-Time

Systems,” 5th International Symposium on Compilers, Architecture and Synthesis for
Embedded Systems, San Jose, CA, October 2003

• So, W. and Dean, A. “Procedure Cloning and Integration for Converting Parallelism from
Coarse to Fine Grain,” Seventh Workshop on Interactions between Compilers and Architectures
(INTERACT 7), February 1, 2003

• Dean, A. "Compiling for Concurrency: Planning and Performing Software Thread Integration,"
23rd IEEE Real-Time Systems Symposium, Austin, TX, December 3-5, 2002

• Dean, A. “Software Thread Integration for Hardware to Software Migration,” Doctoral
Dissertation, Carnegie Mellon University, Pittsburgh, PA, May 2000

• Dean, A., Shen, J. P. “System-Level Issues for Software Thread Integration: Guest Triggering
and Host Selection,” Real-Time Systems Symposium, Phoenix, AZ, December 1-3, 1999

• Dean, A., Grzybowski, R. R. “A High-Temperature Embedded Network Interface Using
Software Thread Integration,” Second International Workshop on Compiler and Architecture
Support for Embedded Systems, Washington, D.C., October 1-3, 1999

• Dean, A., Shen, J. P. "Techniques for Software Thread Integration in Real-Time Embedded
Systems," Real-Time Systems Symposium, Madrid, Spain, December 2-4, 1998

• Dean, A., Shen, J. P. "Hardware to Software Migration with Real-Time Thread Integration,"
EuroMicro Conference: Workshop on Digital System Design, Vasteras, Sweden, August 25-27, 1998

• Dean, A., Shen, J. P. "Thread Integration for Error Detection and Performance," 3rd IEEE
International On-Line Testing Workshop, Crete, Greece, 1997

• More information and soft copies of above: http://www.cesr.ncsu.edu/agdean

