System-Level Power-Performance Trade-offs in Task Scheduling for Dynamically Reconfigurable Architectures

Juanjo Noguera InkJet Commercial Division (ICD) Hewlett-Packard Company jnoguera@bpo.hp.com

Rosa M. Badia Computer Architecture Dept. Technical University of Catalonia (UPC) rosab@ac.upc.es

Outline

- Introduction & Motivation
- Design Methodology for Embedded Systems
- Dynamically Reconfigurable Architecture
- Dynamic Task Scheduling Approach
 - Used Strategies for Power Minimization
- **Experiments & Results**
- Conclusions

Introduction & Motivation

Configurable/Programmable System-On-Chip is Becoming a Reality

Xilinx Virtex II Pro (with an embedded PowerPC)

Low-Power / Energy-Efficiency is a Challenge for Embedded Systems Design

Previous Work

Reconfiguration Latency is a Challenge in Reconfigurable Computing

 Configuration Pre-fetching (overlaps reconfiguration with computation)

Scheduling for Reconfigurable Architectures is based on Static Scheduling Techniques

- Recent Work in Operating Systems Support
- OS consumes a big amount of power of an embedded system

Research Efforts on:

- Power Consumption Distribution in FPGA devices
- Moving into configurable hardware parts of software to reduce power consumption

Objective of this Work

Explore Power-Performance Trade-Offs in <u>Dynamic</u> Task Scheduling Techniques for DRL Architectures

- Configuration Reuse & Configuration Pre-fetching
- Clock-gating & Frequency Scaling
- Hardware Support for Configuration Loading & No OS Support for Dynamic Scheduling

Outline

Introduction & Motivation

Design Methodology for Embedded Systems

- Application Specification
- Design Methodology Overview

Dynamically Reconfigurable Architecture

Dynamic Task Scheduling Approach

Experiments & Results

Conclusions

Application Specification

- Data-Flow Graph
- Coarse-grain tasks
- Data dependencies between tasks
- Data stream based processing
- Ex: JPEG enc

Application Specification (II)

Application Specification (III)

... or further parallelism performing loop-unrolling

Application Specification (IV)

Modeling of applications:

Acyclic Task Graph (Data-Flow Graph) Task & Task Types

Outline

Introduction & Motivation

Design Methodology for Embedded Systems

Dynamically Reconfigurable Architecture

- General Overview
- Galapagos: A First Prototype
- Central Control Unit Architecture
- DRL Controller Architecture

Dynamic Task Scheduling Approach

Experiments & Results

Conclusions

CASES'03

General Overview

Centralized Control Scheme

Dynamic Scheduling Algorithms Implementation

High-Bandwidth External DRAM Interface

General Overview (II)

High-Bandwidth for Communication

Galapagos: A First Prototype

CASES'03

Central Control Unit Architecture

DRL Controller Architecture

Outline

Introduction & Motivation

Design Methodology for Embedded Systems

Dynamically Reconfigurable Architecture

Dynamic Task Scheduling Approach

- Task Scheduler Architecture
- Support for Clock Gating and Frequency Scaling
- DRL/CPU States
- Scheduling Algorithms

Experiments & Results

Conclusions

CASES'03

Task Scheduler Architecture

22

DRL/CPU States

DRL/CPU States

DRL States

Reconfiguration is a high-power consumption state

Power consumption of <u>Execution</u> state is minimized using frequency scaling

Clock-gating is used in <u>Idle</u> and <u>Wait</u> states

Low-Power Strategies Support

Used Low-Power Strategies:

- Clock-Gating (IDLE, WAIT)
- Frequency-Scaling (EXECUTION)

Scheduling Algorithms

Configuration Reuse as Selection Criteria. Select:

- There is an Active Reconfiguration Context within the DRL Array ready for Execution
- Within the Execution Event Window select the event with the Highest Priority

DRL Multi-Context Scheduler based on a Configuration Pre-Fetching approach

Within the Reconfiguration Event Window select the event with the Highest Priority

Outline

Introduction & Motivation

Design Methodology for Embedded Systems
Dynamically Reconfigurable Architecture

Dynamic Task Scheduling Approach

Experiments & Results

- Implementation Results
- Experiments Set-up
- Power-Performance Results

Conclusions CASES'03

Implementation Results

The proposed architectures have been implemented on a Virtex-II Pro device

Reconfigurable Control Module:

- Used Hardware Resources
 - 634 FF's + 835 FF's + 2 SRAM Blocks
- Power Consumption
 - Hardware = 55mW @ 66 MHz
 - Software (PowerPC) = 267mW @ 266MHz
- A Virtex-II device is reconfigured in 8.4ms
 - Three Virtex-II devices can be reconfigured in parallel

No Operating System Support for the Dynamic Scheduling Algorithms CASES'03

Experiments Set-Up

<u>Objective</u>: Study the System-Level Energy Consumption of the Proposed Dynamic Scheduling Algorithms

Test Cases Generated using TGFF. Parameters:

Test Case	Exec. Time = x Rcfg. Time	Num. Task Types	Num. Task Successors	Power (mW)	Freq. (MHz)
1	1	10	5	500	33
2	1/2	10	5	1000	66
3	1	5	5	500	33
4	1/2	5	5	1000	66
5	1	10	2	500	33
6	1/2	10	2	1000	66
7	1	5	2	500	33
8	1/2	5	2	1000	66

Experiments Set-Up (II)

Powering Galapagos from an External Current Source Device

- Power Consumption of a Virtex-II Device is ~450mW
- Total Energy-Consumption is Obtained Adding the Individual Devices Energy

Two Scheduler Implementations:

- Scheduler V1 : Does Not Support Configuration Pre-Fetching
- Scheduler V2 : Supports Configuration Pre-Fetching

Scheduler V1 vs Scheduler V2

- Increasing the #DRL's reduces the execution time and energy consumption
- Frequency scaling reduces execution time but increases energy-consumption

	DRL=2		DRL=3			
Test Case	Exec. Time (uS)	Energy (mJ)	Exec. Time (uS)	Energy (mJ)	Dec. Exec. Time %	Dec. Energy %
1	221640	167.14	181523	167.14	18.10	0.00
	187591	167.15	147.147	167.15	21.56	0.00
2	178581	196.38	144312	196.37	19.19	0.01
	152432	192.78	118670	189.17	22.15	1.87
3	208471	157.32	163898	146.50	21.38	6.88
	178662	153.70	132658	146.51	25.75	4.68
4	152505	179.64	125690	168.79	17.58	6.04
	136217	176.01	105545	168.82	22.52	4.09

Energy Distribution

Energy for Execution is constant (independent of the used scheduler, #DRL's and Freq. Scaling factor)

	SCHEDULER V1 DRL=2		SCHEDULER V1 DRL=3		SCHEDULER V2 DRL=2		SCHEDULER V2 DRL=3	
Test Case	Energy Rcfg (mJ)	Energy Exec (mJ)						
1	64.79	102.35	64.79	102.35	64.80	102.35	64.80	102.35
2	64.80	131.58	64.80	131.57	61.20	131.58	57.59	131.58
3	50.40	106.92	39.58	106.92	46.79	106.91	39.60	106.92
4	46.80	132.83	35.99	132.80	43.20	132.81	35.99	132.83
5	64.79	103.18	61.19	103.21	64.80	103.19	64.81	103.19
6	64.81	127.69	57.60	127.70	68.39	127.68	61.20	127.70
7	46.80	104.76	43.20	104.75	46.80	104.75	39.60	104.75
8	50.40	130.01	43.19	130.00	57.59	130.00	43.20	130.03

Energy Distribution

 Differences in the energy for reconfiguration (increasing the number of DRL reduces the number of reconfigurations, thus reducing energy)

	SCHEDULER V1 DRL=2		SCHEDULER V1 DRL=3		SCHEDULER V2 DRL=2		SCHEDULER V2 DRL=3	
Test Case	Energy Rcfg (mJ)	Energy Exec (mJ)						
1	64.79	102.35	64.79	102.35	64.80	102.35	64.80	102.35
2	64.80	131.58	64.80	131.57	61.20	131.58	57.59	131.58
3	50.40	106.92	39.58	106.92	46.79	106.91	39.60	106.92
4	46.80	132.83	35.99	132.80	43.20	132.81	35.99	132.83
5	64.79	103.18	61.19	103.21	64.80	103.19	64.81	103.19
6	64.81	127.69	57.60	127.70	68.39	127.68	61.20	127.70
7	46.80	104.76	43.20	104.75	46.80	104.75	39.60	104.75
8	50.40	130.01	43.19	130.00	57.59	130.00	43.20	130.03

Comparison between Scheduler V1 and Scheduler V2

- Effect of frequency scaling combined with configuration pre-fetching
- Configuration Pre-Fetching helps to obtain similar performance while reducing energy (clock freq.)

	SCHEDULER V1 ExecTime = FAST		SCHEDULER V2 ExecTime = SLOW			
	(1/2x Rcrg. Time)		(1X KCIG. IIme)			
Test Case	Exec. Time (uS)	Energy (mJ)	Exec. Time (uS) Energy (mJ)		Inc. Exec. Time %	Dec. Energy %
1-2	144312	196.37	147.147	167.15	1.96	17.48
3-4	125690 168.79		132658	146.51	5.54	15.21
5-6	138839	185.30	152734	167.99	10.01	10.30
7-8	120770	173.19	145513	144.35	20.49	19.98

Conclusions

Configuration Reuse and Configuration Pre-fetching Techniques help to reduce both energy and execution time

Configuration Pre-Fetching jointly with Frequency Scaling and Clock-Gating help to reduce energy consumption

Implementation details also help to increase performance while minimizing power consumption

Hardware Support for Configuration Loading

No Operating System Support for Dynamic Scheduling CASES'03

Thanks!

Questions & Answers