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Introduction & Motivation

B Configurable/Programmable System-On-

Chip is Becoming a Reality
= Xilinx Virtex II Pro (with an embedded PowerPC)

/
‘ RISC
Core

N
On-Chip
Memory

Y,

B Low-Power / Energy-Efficiency is a
Challenge for Embedded Systems Design
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Previous Work

B Reconfiguration Latency is a Challenge In

Reconfigurable Computing

= Configuration Pre-fetching (overlaps reconfiguration
with computation)

B Scheduling for Reconfigurable Architectures

Is based on Static Scheduling Techniques

= Recent Work in Operating Systems Support

= OS consumes a big amount of power of an embedded
system

B Research Efforts on:

= Power Consumption Distribution in FPGA devices

= Moving into configurable hardware parts of software to

reduce power consumption
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Objective of this Work

-
Explore Power-Performance Trade-Offs

in Dynamic Task Scheduling Techniques

for DRL Architectures
\_ J

i B

8 Configuration Reuse & Configuration )
Pre-fetching

= Clock-gating & Frequency Scaling

= Hardware Support for Configuration Loading
\_ & No OS Support for Dynamic Scheduling W,
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Outline

B Design Methodology for Embedded Systems
= Application Specification
= Desigh Methodology Overview
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Design Methodology for Embedded Systems
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Application Specification

B Data-Flow Graph
W Coarse-grain tasks

B Data dependencies
between tasks

B Data stream based
processing

B Ex: JPEG enc



Application Specification (II)

M Increase parallelism

P +hf using loop-pipelining
reshift

v

DCT src

(i-1)-th iteration

* i-th iterati‘oy
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Design Methodology for Embedded Systems

Application Specification (III)

loop-unrolling
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Application Specification (1IV)

B Modeling of applications:
= Acyclic Task Graph (Data-Flow Graph)
= Task & Task Types

Design Methodology for Embedded Systems
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Design Methodology Overview

Application System [ Design )
Stage Specification Constraints

[ Extraction )

Static . - ] , HW/SW
Stage [Estlmatmn (Partitioning

(HW Synthesis) (SW SyntheSiS)
Dynamic Hw/ SW uItlbg;-ntext
Stage hedullng Scheduling

Design Methodology for Embedded Systems

CASES'03 11



Design Methodology Overview

Application System ( Design )
Stage Specification Constraints
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Design Methodology Overview

Application System ( Design )
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Design Methodology Overview

Application System [ Design )
Stage Specification Constraints

[ Extraction )

Static . - ] , HW/SW
Stage [Estlmatmn (Partitioning

(HW Synthesis) (SW SyntheSiS)
Dynamic Hw/ SW uItlbg;-ntext
Stage hedullng Scheduling

Design Methodology for Embedded Systems

CASES'03 14



Outline

B Dynamically Reconfigurable Architecture

= General Overview

= Galapagos: A First Prototype

= Central Control Unit Architecture
= DRL Controller Architecture
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General Overview

B Centralized Control Scheme

= Dynamic Scheduling Algorithms
Implementation

= High-Bandwidth External DRAM Interface

. { | DRL, DRL,| --- |DRLy|: CPU
[ IDRLArrav ........ I )
Centralized [¢

System — » Control Unit|¢

DRAM

Dynamically Reconfigurable Architecture

Dynamically Reconfigurable Architecture
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Dynamically Reconfigurable Architecture

General Overview (II)

B High-Bandwidth for Communication

RXx Tx
. [ sram SRAM | |
: |Read Buffer| [Write Buffer| :
Clk —> Configurable
Logic
: Rcfg Execution
i |Interface Control
Rcfg Init Done
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Dynamically Reconfigurable Architecture

Central Control Unit
Architecture

....................................................... I

External Task

Interface Scheduler
. Register Bus I I
: 4 A A A A A A > E

: DRAM DMA DRL, DRL, DRL, CPU ;
i |Controller| (Controller| |Controller| |Controller| [Controller| |Controller| :
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Dynamically Reconfigurable Architecture

DRL Controller Architecture

Register Bus

— —

Register Execution | | _ .
Interface Interface 4_é’II1It/ Done/Clk
A Tx Data Tx Data
Interface | :

DRAMbus|, , (., SELIRELE <— Rx Data

Interface Interface
Rcfg
| Control —§—>Rcfg Protocol
v DRL Controller
DRAM Bus Architecture
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Outline

B
B
B
B Dynamic Task Scheduling Approach

= Task Scheduler Architecture

= Support for Clock Gating and Frequency Scaling
= DRL/CPU States

= Scheduling Algorithms
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Dynamic Task Scheduling Approach

Task Scheduler Architecture

> Execution
> Graph Dependence

Active Set(s)
Information

Check Logic

Event(s) In
\ 4 A 4

Insert

Reconfiguration
Graph Dependence
Check Logic

Event(s) In
A 4 \ 4

Insert

Exec. Event Stream
Interface Logic

Interface Logic

Reconf. Event Stream

:Exec. Event Window:

N

=+— Init

Initiated
Set

CASES'03

Register Bus
Interface

bRL, || l ........................................................
Active Set
; A 4 * \ 2 4
Ac?i\lg- set|[— gxﬁcgti;’“ ) e e
Initiated cheduler Ie.able| Scheduler
CPU Set
Active Set

Register Bus
Interface

22



Dynamic Task Scheduling Approach

DRL/CPU States

(Recon)
)G

(o) +— (s

DRL States

CASES'03

(o

Ceotas)

(ot

(Bec) (s

CPU States

23



Dynamic Task Scheduling Approach

DRL/CPU States

B Reconfiguration is a
high-power
consumption state

B Power consumption
% of Execution state
IS minimized using
(war) frequency scaling

DRL States M Clock-gating is
used in Idle and
Wait states
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Dynamic Task Scheduling Approach

Low-Power Strategies Support

M Used Low-Power Strategies:

= Clock-Gating (IDLE, WAIT)
= Frequency-Scaling (EXECUTION)

clk_select

0O —
1 g
clk_1x —») »[ ] clk_out

clk_2x ———»
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Scheduling Algorithms

m Configuration Reuse as Selection Criteria.
Select:

= There is an Active Reconfiguration Context within the
DRL Array ready for Execution

= Within the Execution Event Window select the event
with the Highest Priority

B DRL Multi-Context Scheduler based on a

Configuration Pre-Fetching approach

= Within the Reconfiguration Event Window select the
event with the Highest Priority

Dynamic Task Scheduling Approach
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Outline

]
]
]
]
B Experiments & Results
= Implementation Results
= Experiments Set-up
= Power-Performance Results
]
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Experiments and Results

Implementation Results

W The proposed architectures have been
implemented on a Virtex-II Pro device

B Reconfigurable Control Module:

e Used Hardware Resources
m 634 FF's + 835 FF's + 2 SRAM Blocks

e Power Consumption
= Hardware = 56mW @ 66 MHz
= Software (PowerPC) = 267mW @ 266MHz

e A Virtex-II device is reconfigured in 8.4ms
= Three Virtex-II devices can be reconfigured in parallel
B No Operating System Support for the
Dynamic Scheduling Algorithms
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Experiments and Results

Experiments Set-Up

M Objective: Study the System-Level Energy

Consumption of the Proposed Dynamic

Scheduling Algorithms
M Test Cases Generated using TGFF.

Parameters:
Test Case Ex:;g‘l:im;: X Nu1|_1‘1, i)::Sk IS“:cTe;zsl"; Power (mW) | Freq. (MHz)
1 ] 1 10 5 500 33
2 1/2 10 5 1000 66
3 1 5 5 500 33
4 1/2 5 5 1000 66
5 1 10 2 500 33
6 1/2 10 2 1000 66
7 1 5 2 500 33
8 1/2 5 2 1000 66
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Experiments Set-Up (II)

B Powering Galapagos from an External
Current Source Device

B Power Consumption of a Virtex-II Device
Is ~450mW

B Total Energy-Consumption is Obtained
Adding the Individual Devices Energy

Experiments and Results

B Two Scheduler Implementations:

= Scheduler V1 : Does Not Support Configuration
Pre-Fetching

= Scheduler V2 : Supports Configuration Pre-Fetching
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Experiments and Results

Power-Performance Results

B Scheduler V1 vs Scheduler V2

= Increasing the #DRL’s reduces the execution time
and energy consumption

= Frequency scaling reduces execution time but

increases energy-consumption

DRL=2 DRL=3
Test Case | Exec. Time (uS) | Energy (mJ) | Exec. Time (uS) | Energy (mJ) | Dec. Exec. Time % | Dec. Energy %
221640 167.14 181523 167.14 18.10 0.00
' 187591 167.15 147.147 167.15 21.56 0.00
178581 196.38 144312 196.37 19.19 0.01
2 152432 192.78 118670 189.17 22.15 1.87
208471 157.32 163898 146.50 21.38 6.88
3 178662 153.70 132658 146.51 25.75 4.68
152505 179.64 125690 168.79 17.58 6.04
* 136217 176.01 105545 168.82 22.52 4.09
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Experiments and Results

Power-Performance Results

M Energy Distribution

= Energy for Execution is constant (independent of the
used scheduler, #DRL’s and Freq. Scaling factor)

SCHEDULER V1 SCHEDULER V1 SCHEDULER V2 SCHEDULER V2
DRL=2 DRL=3 DRL=2 DRL=3
Test |Energy Rcfg|Energy Exec|Energy Rcfg|Energy Exec|Energy Rcfg|Energy Exec]Energy Rcfg| Energy Exec
Case (mJ) (mJ) (mJ) (mJ) (mJ) (mJ) (mJ) (mJ)
1 64.79 102.35 64.79 102.35 64.80 102.35 64.80 102.35
2 64.80 131.58 64.80 131.57 61.20 131.58 57.59 131.58
3 50.40 106.92 39.58 106.92 46.79 106.91 39.60 106.92
4 46.80 132.83 35.99 132.80 43.20 132.81 35.99 132.83
5 64.79 103.18 61.19 103.21 64.80 103.19 64.81 103.19
6 64.81 127.69 57.60 127.70 68.39 127.68 61.20 127.70
7 46.80 104.76 43.20 104.75 46.80 104.75 39.60 104.75
8 50.40 130.01 43.19 130.00 57.59 130.00 43.20 130.03
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Experiments and Results

Power-Performance Results

M Energy Distribution

= Differences in the energy for reconfiguration
(increasing the number of DRL reduces the number of
reconfigurations, thus reducing energy)

SCHEDULER V1 SCHEDULER V1 SCHEDULER V2 SCHEDULER V2
DRL=2 DRL=3 DRL=2 DRL=3
Test |Energy Rcfg|Energy Exec|Energy Rcfg|Energy Exec|Energy Rcfg|Energy Exec|Energy Rcfg| Energy Exec
Case (mJ) (mJ) (mJ) (mJ) (mJ) (mJ) (mJ) (mJ)
1 64.79 102.35 64.79 102.35 64.80 102.35 64.80 102.35
2 64.80 131.58 64.80 131.57 61.20 131.58 57.59 131.58
3 50.40 106.92 39.58 106.92 46.79 106.91 39.60 106.92
4 46.80 132.83 35.99 132.80 43.20 132.81 35.99 132.83
5 64.79 103.18 61.19 103.21 64.80 103.19 64.81 103.19
6 64.81 127.69 57.60 127.70 68.39 127.68 61.20 127.70
7 46.80 104.76 43.20 104.75 46.80 104.75 39.60 104.75
8 50.40 130.01 43.19 130.00 57.59 130.00 43.20 130.03
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Experiments and Results

Power-Performance Results

B Comparison between Scheduler V1 and
Scheduler V2

= Effect of frequency scaling combined with
configuration pre-fetching

= Configuration Pre-Fetching helps to obtain similar
performance while reducing energy (clock freq.)

SCHEDULER V1 SCHEDULER V2
ExecTime = FAST ExecTime = SLOW
(1/2x Rcfg. Time) (1x Rcfg. Time)
Test Case | Exec. Time (uS) | Energy (mJ) | Exec. Time (uS) | Energy (mJ) | Inc. Exec. Time % | Dec. Energy %
1-2 144312 196.37 147.147 167.15 1.96 17.48
3-4 125690 168.79 132658 146.51 5.54 15.21
5-6 138839 185.30 152734 167.99 10.01 10.30
7-8 120770 173.19 145513 144.35 20.49 19.98
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Conclusions

B Configuration Reuse and Configuration
Pre-fetching Techniques help to reduce
both energy and execution time

B Configuration Pre-Fetching jointly with
Frequency Scaling and Clock-Gating help
to reduce energy consumption

B Implementation details also help to
increase performance while minimizing

power consumption

= Hardware Support for Configuration Loading

= No Operating System Support for Dynamic Scheduling
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Thanks!

Questions & Answers
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