Ays

A scalable wide-issue clustered
VLIW with a reconfigurable
INnterconnect

Osvaldo Colavin — Davide Rizzo

STMicroelectronics — San Diego

e Motivations
e Context
e Contributions

e Architecture
- Runtime reconfigurable inter-cluster bus
- Software pipelining architectural support

e Compilation
e Scheduling example
e EXxperiments
e Conclusions

e Reduce the recourse to hardwired accelerators in
embedded systems

- Provide a programmable fabric with significant parallelism
(10s of operations in parallel)

e Keep it simple

- The design envelope for embedded systems is incredibly
tight

e Compiler driven architecture

- Programmable in C (no exotic language, no RTL)
- Essential for programmer’s productivity

e Clustered VLIW (equator, TI C6x, ST200, ST100)
+ Familiar programming model; mature compiler technology

— Limited computing fabric scalability due to inter-cluster
communication overhead

e Reconfigurable architectures (chameleon, Quicksilver,
MorphoTech, MathStar, PACT; GARP, Rapid, PipeRench)
+ Lots of parallelism

— Poor programming model (reconfiguration, low-level
abstraction)

— Scalability limited by global resources (usually interconnect)
— Cycle time known after P&R
— Poor area/power merit figure

e Truly scalable computing fabric
- clock cycle time is independent of the # of clusters
- Inter-cluster transfer latency Is constant
- Area s a linear function of number of clusters

e Compiler friendly runtime reconfigurable architecture

- Adapted version of modulo scheduling for clustered VLIW

- Original forms of predication and register file architecture
for software pipelining support

e Limited reconfigurable architecture side-effects
- Programmed like a VLIW, not like a FPGA
- Reconfiguration takes a few cycles (<10)

instruction program memory/

cache Instruction cache
CPU
executes low Reconfigurable co-processor (RCP)
ILP parts of @ executes high ILP parts of program
program (loop kernels)
(control)

1l 1L

data cache

e Compiler identifies
loops to be
executed on RCP

e Programmer’s view
Is that of a single
machine

CPU

Start co-processor

RCP

.

reconfigure
inter-cluster bus

push live-in
variables

.

[/

read live-in
l variables
wait or execute
|
other code execute loop
l write live-out
variables
read live-out
variables
Stop — enter

'

proceed

low power mode

3-4 instructions

1-2 instructions

0-2 instructions

e Relatively little RCP

overhead

e Reconfiguration requires
only few instructions

program memory/instruction cache

loop hiw

instruction fetch and dispatch

'

reconfigurable

connection [connection £
box ann box ;
register register
file file
FUs FUs

register
file

FUs

s
Y

s
v

s
Y

arbiter

CPU I/f <—»

control
registers

memory interface

e]

to memory subsystem

e lissue/cluster, 16 registers/cluster

e Each register file has
- 4 (2R/2W) ports dedicated to inter-cluster bus connections
- 3 (2R/1W) ports for locally executed instruction

e Inter-cluster bus

- Has a ring topology
- Is composed of 4 segmented buses

ALU ALU ALU ALU ALU ALU ALU ALU
register register register register register register register register
file file file file file file file file
connection — connection — connection — connection — connection — connection — connection — connection
box /= box = box = box = box = box /= box = box
- connection = connection = connection = connection = connection = connection = connection = connection -
box [box || box || box || box [] box] box [] box
register register register register register register register register
file file file file file file file file
ALU ALU ALU ALU ALU ALU ALU ALU

connection

connection

box / \box
L A A
llfiIe T llfiIe T llfiIe T

e Reconfiguration instructions connect
register file ports to interconnect
resources

e They establish connections between
specific registers inside register files
which remain until next reconfiguration

e The span of a connection is limited by
the cycle time; it is the compiler’s
responsibility to respect this constraint

e Renaming Register File

- Reduces code size by obviating the need to unroll the loop
kernel (modulo variable expansion)

e Predicated execution

- Increases the number of loops candidate for software
pipelining by converting control-flow to data-flow

- Reduces code size of software pipelined loops by obviating
the need of prolog and epilog code

SMR

write

addresses —Pp
shift —)

clock >

W,
dec.
logic

RO

R1

Rn

2 write

ports

4 read
ports

e A register file in which queues of
consecutive registers can be defined

e The Shift Mask Register Is the
architected register defining the
queues

e A gueue shifts when a particular
signal is asserted (shift)

e In the RCP, the destination of an
Inter-cluster transfer is typically the
head of a queue

e Add a predicate bit to each register

e A result’s predicate is the logical AND of its source predicates
— Intuitively, it is a dataflow semantic

e Formally,
op dst srcl src?2

IS equivalent to
dst.p = scrl.p & & src2.p
dst = srcl op src?2

e memory operations are predicated

| d dst src st srcl src2
Is equivalent to Is equivalent to
dst.p = scr.p [srcl] = src2 if srcl.p &% src2.p

dst = [src] if dst.p

ALU

[
.

cmp

PALU

Q
= 1P |«
m 1M |«
o 208
ok Zpi [
© TokS
m TPI <
pWDIM
Zpwopi
TPWOP.
pYIM
Zpvp.
TPVPI
Q
O
7] 5p|«
"5 1M«
m 2058
Q Zpbli«
m TaIs
..w TpJ«
S

syllable O | syllable 1 syllable i syllable 15

opcode dst srcl src2 |rcvdjrev2

< > < > < > < > 4> >
10-bit 4-bit 4-bit 4-bit 1 1

| -

24-hit

e Software pipelining of inner loops
- Use If-conversion to increase number of candidates

e Adapted version of modulo scheduling for clustered
VLIW

- Inter-cluster communication resources are statically
allocated by the compiler

— When a schedule fails because of limited inter-cluster
communication resources, increase |l

e Can be built on top of existing VLIW compiler
Infrastructure

b2 e modulo scheduling with 11=4
e inter-cluster latency is 1 cycle

e interconnect resources are
exposed to and allocated by
the compiler

e example shows time

L3 C4 G5 multiplexing of same bus (b3)
Clusters to copy data from C3 to C4

(cycles 7,8) and then from C3

to C5 (cycles 9,10)

N
ZZrX«
w000

H
N
<|IC|olH

time

time

bl
b3
wi wiviviviiwy
5 | K| M
6 | L |N
7 @) T
8 S|1O|V
9 R P
10 U
@ C7 C8 (C9 Cl0 C11 C%
Y
clusters

time

ZZ|Ir|x
wn 20|00

<|C|olH

C3 C4 G5
\ W

g
clusters

_p—

N
A
J

e Only one VLIW instruction for the kernel
e |[LP=15
e The loop is effectively vectorized

e Compare RCP scalability to traditional clustered
VLIW scalability

e Clusters are identical

e Limited to one kernel: IDCT
- Hand-coded for RCP
- Compiled but loop fully unrolled for VLIW

e Memory variable separated
- Memory bandwidth scaled with issue width
- Large cache essentially eliminates misses

label # clusters | issue/cluster | issue width label # clusters | issue/cluster | issue width
VLIW1 4 1 4 4 RCP4 1 4 4
VLIW2_4 2 4 8 RCP8 2 4 8
VLIW4 4 4 4 16 RCP16 4 4 16
VLIW4_6 4 6 24 RCP24 4 6 24
VLIW4 8 4 8 32 RCP32 4 8 32

Results (1)

Cycles Speedup

RCP vs Clustered Scalability on Cycles
4.00

o
al
o

w
o
S

N
a1
o

N
o
S

=
o)
o

1.00
0 8 16 24 32

Issue width
—e— RCP —m— ClusteredVLIW

Code size % dedicated to inter-cluster
communications

Total RCP VLIW
Issues Cost (%) Cost (%)
4 8.3% 0
8 8.3% 26.10%
16 8.3% 32.68%
24 8.3% 31.62%
32 8.3% 19.96%

7%

Results — increasing iteration count

Cycle Speedup

RCP Scalability on Cycles
Increasing loop iteration co

8.00
7.00

6.00
5.00
4.00
3.00

2.00
1.00

unt

0 8 16 24 32

—e— RCPvO —— RCPv1

Issue width

e \\We have described

- a scalable clustered architecture using a limited connectivity
Inter-cluster bus scheme

- Inter-cluster transfer code overhead can be constant using a
combination of runtime reconfiguration and register file
architecture

- a way to compile for such an architecture using a slightly
modified version of modulo scheduling

e On going work

- a compiler based on an existing VLIW compiler
Infrastructure

_ microarchitectural evaluation
- memory interface

