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e Reduce the recourse to hardwired accelerators in
embedded systems

- Provide a programmable fabric with significant parallelism
(10s of operations in parallel)

e Keep it simple

- The design envelope for embedded systems is incredibly
tight

e Compiler driven architecture

- Programmable in C (no exotic language, no RTL)
- Essential for programmer’s productivity




e Clustered VLIW (equator, TI C6x, ST200, ST100)
+ Familiar programming model; mature compiler technology

— Limited computing fabric scalability due to inter-cluster
communication overhead

e Reconfigurable architectures (chameleon, Quicksilver,
MorphoTech, MathStar, PACT; GARP, Rapid, PipeRench)
+ Lots of parallelism

— Poor programming model (reconfiguration, low-level
abstraction)

— Scalability limited by global resources (usually interconnect)
— Cycle time known after P&R
— Poor area/power merit figure




e Truly scalable computing fabric
- clock cycle time is independent of the # of clusters
- Inter-cluster transfer latency Is constant
- Area s a linear function of number of clusters

e Compiler friendly runtime reconfigurable architecture

- Adapted version of modulo scheduling for clustered VLIW

- Original forms of predication and register file architecture
for software pipelining support

e Limited reconfigurable architecture side-effects
- Programmed like a VLIW, not like a FPGA
- Reconfiguration takes a few cycles (<10)
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e lissue/cluster, 16 registers/cluster

e Each register file has
- 4 (2R/2W) ports dedicated to inter-cluster bus connections
- 3 (2R/1W) ports for locally executed instruction

e Inter-cluster bus

- Has a ring topology
- Is composed of 4 segmented buses
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e Reconfiguration instructions connect
register file ports to interconnect
resources

e They establish connections between
specific registers inside register files
which remain until next reconfiguration

e The span of a connection is limited by
the cycle time; it is the compiler’s
responsibility to respect this constraint




e Renaming Register File

- Reduces code size by obviating the need to unroll the loop
kernel (modulo variable expansion)

e Predicated execution

- Increases the number of loops candidate for software
pipelining by converting control-flow to data-flow

- Reduces code size of software pipelined loops by obviating
the need of prolog and epilog code




SMR

write

addresses —Pp
shift — )

clock >

W,
dec.
logic

RO

R1

Rn

2 write

ports

4 read
ports

e A register file in which queues of
consecutive registers can be defined

e The Shift Mask Register Is the
architected register defining the
queues

e A gueue shifts when a particular
signal is asserted (shift)

e In the RCP, the destination of an
Inter-cluster transfer is typically the
head of a queue




e Add a predicate bit to each register

e A result’s predicate is the logical AND of its source predicates
— Intuitively, it is a dataflow semantic

e Formally,
op dst srcl src?2

IS equivalent to
dst.p = scrl.p & & src2.p
dst = srcl op src?2

e memory operations are predicated

| d dst src st srcl src2
Is equivalent to Is equivalent to
dst.p = scr.p [srcl] = src2 if srcl.p &% src2.p

dst = [src] if dst.p
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e Software pipelining of inner loops
- Use If-conversion to increase number of candidates

e Adapted version of modulo scheduling for clustered
VLIW

- Inter-cluster communication resources are statically
allocated by the compiler

— When a schedule fails because of limited inter-cluster
communication resources, increase |l

e Can be built on top of existing VLIW compiler
Infrastructure




b2 e modulo scheduling with 11=4
e inter-cluster latency is 1 cycle

e interconnect resources are
exposed to and allocated by
the compiler

e example shows time
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e Only one VLIW instruction for the kernel
e |[LP=15
e The loop is effectively vectorized




e Compare RCP scalability to traditional clustered
VLIW scalability

e Clusters are identical

e Limited to one kernel: IDCT
- Hand-coded for RCP
- Compiled but loop fully unrolled for VLIW

e Memory variable separated
- Memory bandwidth scaled with issue width
- Large cache essentially eliminates misses




label # clusters | issue/cluster | issue width label # clusters | issue/cluster | issue width
VLIW1 4 1 4 4 RCP4 1 4 4
VLIW2_4 2 4 8 RCP8 2 4 8
VLIW4 4 4 4 16 RCP16 4 4 16
VLIW4_6 4 6 24 RCP24 4 6 24
VLIW4 8 4 8 32 RCP32 4 8 32




Results (1)
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4 8.3% 0
8 8.3% 26.10%
16 8.3% 32.68%
24 8.3% 31.62%
32 8.3% 19.96%
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Results — increasing iteration count
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e \\We have described

- a scalable clustered architecture using a limited connectivity
Inter-cluster bus scheme

- Inter-cluster transfer code overhead can be constant using a
combination of runtime reconfiguration and register file
architecture

- a way to compile for such an architecture using a slightly
modified version of modulo scheduling

e On going work

- a compiler based on an existing VLIW compiler
Infrastructure

_ microarchitectural evaluation
- memory interface







