
STMicroelectronics – San Diego

A scalable wide-issue clustered 
VLIW with a reconfigurable 

interconnect

 Osvaldo Colavin – Davide Rizzo



Overview

" Motivations
" Context
" Contributions
" Architecture

– Runtime reconfigurable inter-cluster bus
– Software pipelining architectural support

" Compilation
" Scheduling example
" Experiments
" Conclusions



Motivations

" Reduce the recourse to hardwired accelerators in 
embedded systems
– Provide a programmable fabric with significant parallelism 

(10s of operations in parallel)

" Keep it simple
– The design envelope for embedded systems is incredibly 

tight

" Compiler driven architecture
– Programmable in C (no exotic language, no RTL)
– Essential for programmer’s productivity



Context 

" Clustered VLIW (Equator, TI C6x, ST200, ST100)

+ Familiar programming model; mature compiler technology
– Limited computing fabric scalability due to inter-cluster 

communication overhead

" Reconfigurable architectures (Chameleon, QuickSilver,
MorphoTech, MathStar, PACT; GARP, Rapid, PipeRench)

+ Lots of parallelism
– Poor programming model (reconfiguration, low-level 

abstraction)
– Scalability limited by global resources (usually interconnect)
– Cycle time known after P&R
– Poor area/power merit figure



Contributions of this work

" Truly scalable computing fabric
– clock cycle time is independent of the # of clusters

– Inter-cluster transfer latency is constant

– Area is a linear function of number of clusters

" Compiler friendly runtime reconfigurable architecture
– Adapted version of modulo scheduling for clustered VLIW

– Original forms of predication and register file architecture 
for software pipelining support

" Limited reconfigurable architecture side-effects
– Programmed like a VLIW, not like a FPGA

– Reconfiguration takes a few cycles (<10)



General purpose CPU coupled to a 
wide issue width co-processor

CPU
executes low 
ILP parts of 

program 
(control)

data cache

instruction
cache

Reconfigurable co-processor (RCP)
executes high ILP parts of program 

(loop kernels)

program memory/
instruction cache

" Compiler identifies 
loops to be 
executed on RCP

" Programmer’s view 
is that of a single 
machine



Execution model

start co-processor

push live-in
variables

wait or execute
other code

read live-out
variables

proceed

reconfigure
inter-cluster bus

read live-in
variables

execute loop

write live-out
variables

Stop – enter 
low power mode

RCPCPU

3-4 instructions

1-2 instructions

0-2 instructions

" Relatively little RCP 
overhead

" Reconfiguration requires 
only few instructions



connection
box

register
file

FUs

connection
box

register
file

FUs

connection
box

register
file

FUs

memory interface

reconfigurable

inter cluster bus

instruction fetch and dispatch

program memory/instruction cache

...

loop h/w

...

arbiter

control
registers

to memory subsystem

Runtime reconfigurable co-processor

CPU I/f



RCP parameters considered

" 1issue/cluster, 16 registers/cluster

" Each register file has
– 4 (2R/2W) ports dedicated to inter-cluster bus connections

– 3 (2R/1W) ports for locally executed instruction

" Inter-cluster bus
– Has a ring topology

– Is composed of 4 segmented buses



Example: 16-cluster RCP

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box

register
file

ALU

connection
box



Connection box

register
file

ALU

connection
box

register
file

ALU

register
file

ALU

connection
box

" Reconfiguration instructions connect 
register file ports to interconnect 
resources 

" They establish connections between 
specific registers inside register files 
which remain until next reconfiguration

" The span of a connection is limited by 
the cycle time; it is the compiler’s 
responsibility to respect this constraint



Architectural support for
software pipelining

" Renaming Register File
– Reduces code size by obviating the need to unroll the loop 

kernel (modulo variable expansion)

" Predicated execution
– Increases the number of loops candidate for software 

pipelining by converting control-flow to data-flow

– Reduces code size of software pipelined loops by obviating 
the need of prolog and epilog code



Shifting register file

 

R0 

R1 

Rn 

 
 
 
 
 
 

wr. 
dec. 
logic 

SMR 

4 read 
ports 

2 write 
ports 

write
addresses

clock

shift

n 

" A register file in which queues of 
consecutive registers can be defined

" The Shift Mask Register is the 
architected register defining the 
queues

" A queue shifts when a particular 
signal is asserted (shift)

" In the RCP, the destination of an 
inter-cluster transfer is typically the 
head of a queue



Operand predicates
" Add a predicate bit to each register

" A result’s predicate is the logical AND of its source predicates
– Intuitively, it is a dataflow semantic

" Formally,
op dst src1 src2

is equivalent to
dst.p = scr1.p && src2.p

dst = src1 op src2

" memory operations are predicated
ld dst src

is equivalent to
dst.p = scr.p

dst = [src] if dst.p

st src1 src2

is equivalent to
[src1] = src2 if src1.p && src2.p



Architectural support for operand 
predication

ALUpALU

data register file

predicate register file
rd

1

rd
2

w
r

sr
c1

sr
c2

ds
t

rd
1

rd
2

w
r

sr
c1

sr
c2

ds
t

rd
A

d1
rd

A
d2

w
rA

d
rd

C
m

d1
rd

C
m

d2
w

rC
m

d

cmp



Instruction format

 

rcv1 rcv2 opcode dst src1 src2 

10-bit 4-bit 4-bit 4-bit 1 1 

syllable 0 syllable 1 syllable i syllable 15 … … 

24-bit



Compiling for the RCP

" Software pipelining of inner loops
– Use if-conversion to increase number of candidates

" Adapted version of modulo scheduling for clustered 
VLIW
– Inter-cluster communication resources are statically 

allocated by the compiler
– When a schedule fails because of limited inter-cluster 

communication resources, increase II

" Can be built on top of existing VLIW compiler 
infrastructure



Scheduling example using a portion of 
the DCT data flow graph – II=4

*3406

*565

*(-799)

*4017

*2408

K

L

M

N

O

P

Q

R

T

S

U
V

*2276 K
L
M
N O

R
S

time

P

Q

clusters

C3 C4 C5

U
V

T

" modulo scheduling with II=4

" inter-cluster latency is 1 cycle

" interconnect resources are 
exposed to and allocated by 
the compiler

" example shows time 
multiplexing of same bus (b3) 
to copy data from C3 to C4 
(cycles 7,8) and then from C3 
to C5 (cycles 9,10)

b3
b2
b1
b0

6
7
8
9
10
11
12
13



Scheduling example using a portion of 
the DCT data flow graph – II=2

*3406

*565

*(-799)

*4017

*2408

K

L

M

N

O

P

Q

R

T

S

U
V

*2276

K
L

M
N

O
R

Stime
Q

clusters

C6 C7 C8

b3
b2
b1
b0

6
7
8
9
10

5

P
V
T

U

C9 C10 C11 C12

K
L
M
N O

R
S

time

P

Q

clusters

C3 C4 C5

U
V

T

b3
b2
b1
b0

6
7
8
9
10
11
12
13



3
c1

c3

4-tap FIR scheduling 
example – II=1

LD

*

+
1

<
imax

x

*

+

c2

* *

+

c0
xi+2 xi+1 xi

+

ST
s0

+4
y

i

i

EX
L

+

A

B

C

D

E F G H

J

KM

N

L
P

z-1 z-1 z-1

s1

s2

xi+3

A

C

D

E F

J

G

N

H

K M

P

S S

z-1

S

B



4-tap FIR example
loop kernel

" Only one VLIW instruction for the kernel 

" ILP=15 

" The loop is effectively vectorized

S L P MKNHGJFEDCBA



Experimental setup

" Compare RCP scalability to traditional clustered 
VLIW scalability

" Clusters are identical
" Limited to one kernel: IDCT

– Hand-coded for RCP
– Compiled but loop fully unrolled for VLIW

" Memory variable separated
– Memory bandwidth scaled with issue width
– Large cache essentially eliminates misses



Machines Compared

2464VLIW4_6

1644VLIW4_4

3284VLIW4_8

842VLIW2_4

441VLIW1_4

issue widthissue/cluster# clusterslabel

2464RCP24

1644RCP16

3284RCP32

842RCP8

441RCP4

issue widthissue/cluster# clusterslabel



Results (1)

RCP vs Clustered Scalability on Cycles

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 8 16 24 32
Issue width

C
yc

le
s 

Sp
ee

du
p

RCP ClusteredVLIW

Total
Issues

RCPRCPRCPRCP
Cost (%)Cost (%)Cost (%)Cost (%)

VLIWVLIWVLIWVLIW
Cost (%)Cost (%)Cost (%)Cost (%)

4 8.3% 0

8 8.3% 26.10%

16 8.3% 32.68%

24 8.3% 31.62%

32 8.3% 19.96%

Code size % dedicated to inter-cluster 
communications



Results – increasing iteration count
RCP Scalability on Cycles

Increasing loop iteration count

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0 8 16 24 32
Issue width

C
yc

le
 S

pe
ed

up

RCPv0 RCPv1



Conclusions and future work

" We have described 
– a scalable clustered architecture using a limited connectivity 

inter-cluster bus scheme
– inter-cluster transfer code overhead can be constant using a 

combination of runtime reconfiguration and register file 
architecture

– a way to compile for such an architecture using a slightly 
modified version of modulo scheduling

" On going work
– a compiler based on an existing VLIW compiler 

infrastructure
– microarchitectural evaluation
– memory interface



Thank you!


