
The History of VLIWs in
One Slide

(A “Short Subject” Before
the Main Feature)

Josh Fisher
Senior Fellow

Hewlett-Packard
josh.fisher@hp.com

Copyright 2003,
Hewlett-Packard Company

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Technology
Trigger

Peak of
Inflated

Expectations

Copyright © 2003

Using the Gartner Group’s Hype Cycle
To Look At The History of VLIWs

1984 – Multiflow &
Cydrome startup

1987 – VLIWs work!

1988 – Multiflow: best
Linpack price/perf.

1990 – Multiflow has sold
~130 big machines

1978-9 – Trace
Scheduling

1981-3 – VLIW
Architectures

1983-84 – “You
can’t build them”

1990 – Multiflow folds
(Cydrome already had)

“Killer Microprocessor”
was going to be too much

1990-3 – Press & even
researchers equate
startups’ failure with
VLIW unworthiness.
VLIW’s future looks

bleak.
Innovator’s Dilemma
reigns supreme

Early 1990s – VLIW
crosses microprocessor
barrier now back on track

Important new techniques
lay groundwork for rich
future, including: runtime

compatibility,
path profiling,
speculation
done right, etc.

Now many, many VLIW
announcements in
embedded, Transmeta
puts VLIW under x86
emulation, Pentium
successor follows VLIW
style, etc. etc. etc. VLIW
seems to have big future

Moving From
Embedded Systems to
Embedded Computing

(Some Lessons in
Embedded Processing)

Josh Fisher
Senior Fellow

Hewlett-Packard
josh.fisher@hp.com

Copyright 2003,
Hewlett-Packard Company

“This was one of the lessons from the Deep Blue
project: only in exceptional cases does it make sense
to design special purpose hardware for a particular
application (e.g. to play chess). Usually it is better to
rely on general purpose processors.”

http://www.research.ibm.com/resources/news/20021024_deepblue.shtml

Lessons in Embedded Processing

This talk is about a few of the lessons I’ve
learned myself in Embedded Processing, and
some important changes that are occurring in
that field.

In 1994, HP & Intel signed an R&D agreement that
would result in the IA-64’s emergence from the HP
Labs “Wide-Word” VLIW project.

My own work, and that of HPL Cambridge, which I
had just started, was centered on that project.
Clearly we’d be swamped by armies of engineers.

I fled; I moved my own work and that of my lab
mostly into embedded computing: Trying to design
a framework that would spit out customized cores.

Embedded & Me

That project was commercially very successful
(though I can’t go into details).

I’ve learned a lot doing this; some of it very
unexpected. This talk is about some of what I’ve
learned.

Lesson #1: was that there’s really big gulf, which my
colleagues and I characterize as:

“Embedded Systems” vs. “Embedded Computing”

Embedded Systems?

Embedded Systems

Because of Moore’s Law, Embedded Systems
are Moving to Embedded Computing

• Processor core is a
commodity

• Many nonprogrammable
computing elements

• Peripherals

• Critical buses

• Analog interfaces

• Heroic verification

• UML

• Etc.

Embedded
Computing

• High-performance computing
is the center of the system

• Most important functionality
moved into processor core

• The important parts of the
application are all written
in software and compiled

Embedded Systems Developers

A Huge Gulf Between Communities

• … have tremendous skills in
ASIC design &/or DSPs

• They use extensive libraries
of “IP”, and…

• …have partners of all
varieties with IP blocks to
sell for flat fees or royalties

• There is far too little
knowledge of what
I would call
advanced
computer
systems
design

General-
Purpose
Developers

… know perfectly
well what embedded

systems are:

really small computer systems,
with limited capabilities

(maybe with a real-time or other
similar twist you have to consider.)

They’re usually clueless about
what really is different in an
embedded system.

I was told this in all seriousness a few years ago
by a very capable microprocessor designer:

“Oh, we have a lot competence in System-on-Chip
in our lab. We integrated L1 cache on our last
processor.”

Anecdotes

This happened to us in our lab in Cambridge:

Anecdotes

We were working with a very capable group of
engineers in a high-end printer division of HP.
They had a severe performance problem with the
embedded application in an important product,
and were going through a lot of trouble to get a
faster microprocessor. …

Anecdotes

… We were interested in the application itself (to
design a custom chip for it), and profiled it. We were
amazed to find a section of code that had no effect,
but used a large chunk of the run time. It turned out
they knew about it, but just figured it used a tiny
amount of time. They had never profiled. Imagine if
the equivalent had been true of an ASIC!!

I want to emphasize that this was a smart and
capable design group and an important application.

Anecdotes

We recently had a similar situation, in another
important application. The application was in Java,
and the program contained a line like:

log.debug("xxx" + object)

Even with debugging off, this led to the evaluation of
something like:

add_string("xxx", convert_to_string(object))

Adding if (debug) made the application 3.5x faster.

Because of Moore’s Law, the main business of embedded
is completely changing. Silicon companies find that they
have to be the integrated solution provider, because with
few exceptions, the customer cannot be, and they must:

-Assemble applications themselves.
-Own the IP themselves, mostly in software, not silicon
-Therefore, become systems companies

They’re trying: Major silicon companies are buying all the
little compiler companies, etc. But it’s very hard—the
cultural and knowledge mismatches are pretty serious.

The Move to “Embedded Computing”

CASES Submissions are an Indicator

0

20
40

60
80

100

120
140

160
180

1998 1999 2000 2001 2002 2003

Submitted
Papers

June, 2001. IEEE Spectrum. “Digital Signal Processors”.June, 2001. IEEE Spectrum. “Digital Signal Processors”.

“VLIW”

“VLIW”
“VLIW”

“VLIW”

(small is good)

A Slippery Slope Towards General-Purpose

We Hope This Captures the Needed Skills

Being beta-tested
in classes now.

To appear,
Fall 2004.

Lesson #2: concerns what goes into
software, running on the core. This is
related to the 1st lesson.

ASICs always get there first. You get more
performance out of fewer transistors by far.

These work when nothing else will. And
they’re invariably the fastest solution when
practical (no 5-10x emulation cost).

The High-Performance Center of the Application

But eventually ASICs become less attractive:

- Incremental engineering is expensive, slow and
filled with delays

- It can’t keep up with changing market conditions

- It can’t adjust to new standards

- Just as Moore’s law makes the software solution
better, it makes this solution worse! (sort of…)

In time, there’s enough silicon for software solution.

The High-Performance Center of the Application

Migrating Compute-Intensive Apps to
Software, A Constant Industry Trend

Main application
running on

general-purpose CPU

ASIC ASIC ASICASIC

When something is at
the computational

heart of the
application it’s

almost always better
done here, instead of

pulling it out and
running on special

hardware.

When high-bandwith I/O at the entrances/exits from the
app is present, often a hardware solution is far better.

(Examples: Demosaicing in camera, some graphics, etc.)
Sometimes software is better anyway (WinModem, …)

Before Stacker and built-in compression

From: Seybold Seminars, Spring 93. About
Adaptive Solutions’ PowerShop board.

Last year Adaptive Solutions announced PowerShop, an image-
processing acceleration board featuring its new DSP chip
technology.
This year, it demonstrated two released versions, one for the Nubus
and another for the PCI bus. PowerShop lists for $2,000 and
consists of a board with four 16-bit processor chips and 4 MB of
memory bundled with a copy of ScanPrepPro software.

(From ebay June 7, 2001: “Very rare to still find these cards
available.”)

A board to speed up Photoshop

Sadly, the process of moving the computational
heart out of special circuits into software suffers
from the “Innovator’s Dilemma” very badly.

ASICs start out entrenched! Going from Generation
(N) to Generation (N+1) of any product, the best
thing to do is redo the ASIC (or whatever).

Making the jump to the superior software solution
requires investment, loss, use of best engineers,
building a less performant product than you could
have built, and at higher cost.

But It’s a Pretty Good Beachhead!

technology

CPU +
ASIC

CPU +
DSP

High-ILP
CPU

Sequential
RISC

very long

long

short

time to
market

very short

very high

high

high

performance/
cost

low-medium

impossible:
redesign

long

short

time to change
functionality

very short

sp
eed fl

ex
ib

ili
ty

Trading Speed for Flexibility

technology

CPU +
ASIC

CPU +
DSP

Custom
VLIW

Sequential
RISC

very long

long

Still pretty
short

time to
market

very short

very high

high

even higher
than DSP

performance/
cost

low-medium

impossible:
redesign

long

short

time to change
functionality

very short

sp
eed fl

ex
ib

ili
ty

Adding Customization?

Since embedded CPUs suffer far less from object-
code incompatibility, and run one application
repeatedly, there is a tremendous temptation to
design and build customized CPUs.

We set out to build a framework to do this in 1994.

My own expectation was that I’d be told that
performance wasn’t really important (I’d heard this
all my professional life). But I heard the opposite.

Custom Embedded CPUs

A Framework for Automatic Processor Generation

gather key code from
application area

gather key code from
application area

human prunes space
of trial architectures

human prunes space
of trial architectures

generate first trial
architecture

generate first trial
architecture

generate compiler &
other tools for this

architecture

generate compiler &
other tools for this

architecture

compile key code for
this architecture,

measure
performance

compile key code for
this architecture,

measure
performance

record performance,
hardware properties;

generate next trial
architecture

record performance,
hardware properties;

generate next trial
architecture

this loop is
fully

automated

when
done,

display
results

when
done,

display
results

• requirements: software tools driven by architecture models
(compiler, toolchain, libraries, simulators, verification, ...)

• challenge: a truly retargetable compiler that can find large
amounts of ILP in the presence of customization

Lesson #3: It’s just not practical to optimize to a single
application.

Customize to a Single Application?

1. Having in hand, well in advance, the application that will
run on the device is only a dream.

For too many reasons to enumerate, the code will change
until the product ships, and long after.

2. The whole point of a software solution is that you want to
be able to change it. Design too narrowly, and you’ll lose.

Fortunately, one can still customize to a “domain”, and find
enough commonality to make it well worthwhile.

Lesson #4: The picture of automatic customization is very
appealing. But keep the application programming expert
around anyway for a while. Or maybe forever.

“What?! You’re willing to give me TWO integer multipliers?? If
I’d known that, I would have inverted those two loops and
rewritten the second computation. By the way, if I do that, 16-
bit multiplies will do it just as fast, I won’t need 32-bit units.”

This is hard enough to do when the architecture is fixed, to do
it as part of an exploration process is way beyond us.

No automatic process will capture this process anytime soon.

Do Fully-Automatic Customization?

Some things we learned:

1. Circuit density will move embedded systems as
we know it today to something that resembles
high performance computing, but competence
and cultural issues make this a battle.

2. There is a constant movement of the
computational heart of applications into the main
processor, but there are serious “innovator’s
dilemma” problems in doing this.

Lessons in Embedded Systems

Some things we learned:

3. Customization is an advantage available in
embedded, but it’s hard to customize to an
application—customize to a domain instead.

4. However automated customization gets, it will be
a long time before the application-expert
programmer ever gets out of the loop, if ever.

Lessons in Embedded Systems

Moving From
Embedded Systems to
Embedded Computing

(Some Lessons in
Embedded Processing)

Josh Fisher
Senior Fellow

Hewlett-Packard
josh.fisher@hp.com

Copyright 2003,
Hewlett-Packard Company

