
Efficient Spill Code for SDRAM

V. Krishna Nandivada and Jens Palsberg

1

• Processor speed is doubling every 18 months

BUT memory speed is increasing only around

15% in that time.

• Every memory access is getting costlier.

• Modern processors and memory architectures

allow efficient memory access.

e.g. StrongARM + SDRAM.

2

Can we make the compiler aware of

these properties?

3

1. gcc 2.95.2 compiler.

2. StrongARM processor present in the Intel’s

IXP-1200.

3. ILP solver as a component in the compiler.

4

Local scalar variables are allocated, on the stack,

in such a way that

• Memory accesses are reduced.

• Memory accesses are made faster.

• Code size may not increase.

• All at the cost of affordable increase in

compilation time.

5

Related Work

• D. Bartley - SPE 1992

• Stan Liao et.al - TOPLAS 1994

• J. Wagner and R. Leupers - LCTES 2001

• Lal George and Mathias Blume - PLDI 2003

• A. Stoutchinin

David Goodwin and Kent D. Wilken

Andrew Appel and Lal George

6

Support we get from processor and memory

• SDRAM has 64 bit bus. Loading/Storing

32 bits is inefficient.

• To use this power of SDRAM, we need a

way to load/store two 32 bit words at a

time.

• StrongARM has a load-multiple/store-multiple

instruction.

7

StrongARM’s load/store multiple instructions:

• LDM Rb [list L of registers in ascending order]

If the list L has registers

Ri, Rj and Rk (assume k > j > i)

Ri = [Rb],

Rj = [Rb+4],

Rk = [Rb+8]

• STM Rb [list of L registers in ascending order]

If the list L has registers

Ri, Rj and Rk (assume k > j > i)

[Rb] = Ri,
[Rb+4] = Rj,

[Rb+8] = Rk

8

ldr addr1 ri

ldr addr2 rj

semantically equivalent to

mov r addr1
LDM r {ri, rj}

9

On SDRAM
Cost of one read (up to 64 bits) = 40 cycles.
Cost of one write (up to 64 bits) = 50 cycles.

Each LDR = 40 cycles.
Each STR = 50 cycles.

LDM to load two registers = 40 cycles !
STM to store two registers = 50 cycles !

Cost of one add/mov = 1 cycle.

Hence cost of two LDRs = 80 cycles.
Cost of add + LDM = 41 cycles!

It is advantageous to replace
two LDRs or two STRs with

an ADD followed by LDM or STM respectively.

10

To merge two load instructions

ldr addr1 ri

ldr addr2 rj
into

mov r addr1
LDM r {ri, rj}

(If addr2 − addr1 = 4) we want j > i.

if (i > j) then

(we call it an inversion)

• After the LDM instruction we swap the the

contents of the two registers ri and rj.

• In case of STM, we need to swap the registers

before and after the instruction.

11

• SDRAM allows two words to be loaded/stored

at the same time.

• StrongARM has instructions to request two

consecutive words to be read/written from/to

memory.

12

| |

| |

| | 0x10

| | 0x0C

| | 0x08

| | 0x04

| | 0x00

• Say we have to load

R1 from [0x00]

R2 from [0x04]

then we can combine them into one LDM.

• However say we want to load

R1 from [0x00]

R2 from [0x08]

then we cannot merge them.

13

foo(){

int a,b,c,d,e;

bar1(&a,&b,&c);

a=c+a;

bar2(&b,&d);

e=b+d;

bar3(&e);

return a+e;

}

ldr r3, [fp, #-28] ;c
ldr r2, [fp, #-20] ;a
add r3, r3, r2 ;a+c
str r3, [fp, #-20] ;a
sub r0, r4
sub r1, fp, #32
bl bar2

ldr r3, [fp, #-24] ;b
ldr r2, [fp, #-32] ;d
add r3, r3, r2 ;b+d
str r3, [fp, #-36] ;e
sub r0, fp, #36
bl bar3

ldr r3, [fp, #-20] ;a
ldr r0, [fp, #-36] ;e
add r0, r3, r0 ;a+e

14

The Problem:

Given a set of variables

we need to find a permutation

of the variables such that

the loads and stores are optimized.

15

The Placement Problem

Given a set of blocks of memory accesses,

find a placement function that leads to

maximizing the number of

double loads and double stores,

while minimizing the number of inversions.

A decision version of the placement problem is
NP-Complete.

(Reduce it from Hamiltonian path problem.)

16

SLA - Stack Location Allocator

Model Extraction

• Find all the candidate pairs (called edges)

of word load/stores.

• For each edge, note the static execution

frequency w.

• For each edge e note the cycle count:

cost[e]=40 if it consists of a pair of loads

and

cost[e]=50, if it consists of a pair of stores.

This information is output to a Integer Linear

Program (ILP) solver to solve.

17

Constraint Generation:

In the constraints generated

• Set of variables vars : {1..n}.

• Placement function

f :array{vars × vars} of {0,1}.

If f [v, p] = 1 then variable v has position p.

• For any edge e, if ILP decides to introduce

a LDM/STM then isPair[e]=1.

18

The ILP solver needs linear constraints and a

linear objective function.

• Solving the placement problem contributes

to saving cycles in the overall execution.

•Our ILP maximizes an objective function which

approximates the number of saved cycles.

− If two LDRs/STRs are replaced by a LDM/STM

then we save around 40/50 cycles.

− Inversion ⇒ swap registers ⇒ saving reduced

by 3/6 cycles.

s[e] = isPair[e]× w[e]× cost[e]

Objective function:
∑

s[e]

19

f is a permutation matrix:

∀v ∈ vars :
∑

p∈vars

f [v, p] = 1

∀p ∈ vars :
∑

v∈vars

f [v, p] = 1

Some other constraints :

• isPair[e] can be set 1, only if e is a valid

edge.

• if f [v1, p1] = 1 and f [v2, p2] = 1 then

diff[v1, v2] = p2 − p1.

• if isPair[e] = 1 then |diff[e]| = 1.

20

Constraint Solving

• AMPL to frame the constraints and objective

function.

• CPLEX to solve them.

21

Code Transformation

1. Read back the solution.

2. For each instruction do:

• (r = fp+ offset) −→ (r = fp+ offset′)

• Modify all load/store instructions which

have frame pointer as the base register.

3. For each edge e with isPair[e]=1

• Replace the two instructions by LDM/STM.

• Insert an add instruction.

• Insert exclusive-or (eor) instructions if

required.

22

foo(){ int a,b,c,d,e;
bar1(&a,&b,&c);
a=c+a;
bar2(&b,&d);
e=b+d;
bar3(&e);
return a+e;

}

var old loc new loc
a fp-20 fp-24
b fp-24 fp-32
c fp-28 fp-20
d fp-32 fp-36
e fp-36 fp-28

Without SLA
ldr r3, [fp, #-28]
ldr r2, [fp, #-20]
add r3, r3, r2
str r3, [fp, #-20]
sub r0, r4
sub r1, fp, #32
bl bar2

ldr r3, [fp, #-24]
ldr r2, [fp, #-32]
add r3, r3, r2
str r3, [fp, #-36]
sub r0, fp, #36
bl bar3

ldr r3, [fp, #-20]
ldr r0, [fp, #-36]
add r0, r3, r0

With SLA
sub r2, fp, #24
ldmia r2, {r2,r3} ;load a,c
add r3, r3, r2 ;a=a+c

str r3, [fp, #-24] ;store a.

mov r0, r4
sub r1, fp, #36 ;&d

bl bar2 ;call

ldmia sp, {r2,r3} ;load b,d
add r3, r3, r2 ;e=b+d

str r3, [fp, #-28] ;store e

sub r0, fp, #28 ;&e

bl bar3 ;call

sub r0, fp, #28
ldmia r0, {r0,r3} ;load a,e
add r0, r3, r0 ;a+e

23

• MediaBench: GSM and EPIC

• NetBench: Url, Md5 and IPChains

• Purdue: Classifer and Firewall

24

Benchmark characteristics

Benchmark #funcs #lines

GSM 98 8643

EPIC 49 3540

Url 12 790

Md5 17 753

IPChains 76 3453

Classifier 25 2850

Firewall 30 2281

Compile time statistics

Compile time (sec) Xformations
Bench w/o SLA SLA % worse ldrs strs eor

GSM 5.22 5.90 13.5 18 8 6

EPIC 1.34 2.67 99.2 228 30 24

Url 0.25 0.52 108.0 12 4 0

Md5 0.27 0.30 14.8 4 0 0

IPChains 1.69 2.67 58.0 44 14 9

Classifier 2.27 4.73 107.0 26 2 6

Firewall 1.84 2.71 47.3 24 0 6

25

Exec time characteristics

Execution time (sec)
Bench w/o SLA SLA % imp

GSM 0.57 0.55 3.6

EPIC 0.65 0.61 6.2

Url 6.32 6.27 0.8

Md5 0.75 0.73 2.7

IPChains 0.23 0.20 15.1

Classifier 2.71 2.70 0.8

Firewall 3.49 3.41 2.4

26

Compiling Exec time

Bench Overhead Improvement

GSM 13.5 3.6

EPIC 99.2 6.2

Url 108.0 0.8

Md5 14.8 2.7

IPChains 58.0 15.1

Classifier 107.0 0.8

Firewall 47.3 2.4

bench Transformations %imp
loads stores eor

GSM 18 8 6 3.6

EPIC 228 30 24 6.2

Url 12 4 0 0.8

Md5 4 0 0 2.7

IPChains 44 14 9 15.1

Classifier 26 2 6 0.8

GSM 24 0 6 2.4

27

Conclusion

• Implemented SLA in gcc for StrongARM,

studied the behavior.

• Code generated will always run faster. We

found improvements in the range 0.8-15.1%.

• Performance gained depends mostly on the

number of replacements in the most frequently

executed code.

• As the gap between processor speed and

memory latency continues to widen, such

optimization will be increasingly important.

28

Future Work

• Merge SLA with register allocation.

• SLA for global variables.

• Use dynamic weights using profiling.

• Use heuristics and compare with our performance.

29

Thanks!

30

