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• Processor speed is doubling every 18 months

BUT memory speed is increasing only around

15% in that time.

• Every memory access is getting costlier.

• Modern processors and memory architectures

allow efficient memory access.

e.g. StrongARM + SDRAM.
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Can we make the compiler aware of

these properties?
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1. gcc 2.95.2 compiler.

2. StrongARM processor present in the Intel’s

IXP-1200.

3. ILP solver as a component in the compiler.
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Local scalar variables are allocated, on the stack,

in such a way that

• Memory accesses are reduced.

• Memory accesses are made faster.

• Code size may not increase.

• All at the cost of affordable increase in

compilation time.
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Support we get from processor and memory

• SDRAM has 64 bit bus. Loading/Storing

32 bits is inefficient.

• To use this power of SDRAM, we need a

way to load/store two 32 bit words at a

time.

• StrongARM has a load-multiple/store-multiple

instruction.
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StrongARM’s load/store multiple instructions:

• LDM Rb [list L of registers in ascending order]

If the list L has registers

Ri, Rj and Rk (assume k > j > i)

Ri = [Rb],

Rj = [Rb+4],

Rk = [Rb+8]

• STM Rb [list of L registers in ascending order]

If the list L has registers

Ri, Rj and Rk (assume k > j > i)

[Rb] = Ri,
[Rb+4] = Rj,

[Rb+8] = Rk
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ldr addr1 ri

ldr addr2 rj

semantically equivalent to

mov r addr1
LDM r {ri, rj}
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On SDRAM
Cost of one read (up to 64 bits) = 40 cycles.
Cost of one write (up to 64 bits) = 50 cycles.

Each LDR = 40 cycles.
Each STR = 50 cycles.

LDM to load two registers = 40 cycles !
STM to store two registers = 50 cycles !

Cost of one add/mov = 1 cycle.

Hence cost of two LDRs = 80 cycles.
Cost of add + LDM = 41 cycles!

It is advantageous to replace
two LDRs or two STRs with

an ADD followed by LDM or STM respectively.
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To merge two load instructions

ldr addr1 ri

ldr addr2 rj
into

mov r addr1
LDM r {ri, rj}

(If addr2 − addr1 = 4) we want j > i.

if (i > j) then

(we call it an inversion)

• After the LDM instruction we swap the the

contents of the two registers ri and rj.

• In case of STM, we need to swap the registers

before and after the instruction.

11



• SDRAM allows two words to be loaded/stored

at the same time.

• StrongARM has instructions to request two

consecutive words to be read/written from/to

memory.
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| |

| |

| | 0x10

| | 0x0C

| | 0x08

| | 0x04

| | 0x00

• Say we have to load

R1 from [0x00]

R2 from [0x04]

then we can combine them into one LDM.

• However say we want to load

R1 from [0x00]

R2 from [0x08]

then we cannot merge them.
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foo(){

int a,b,c,d,e;

bar1(&a,&b,&c);

a=c+a;

bar2(&b,&d);

e=b+d;

bar3(&e);

return a+e;

}

ldr r3, [fp, #-28] ;c
ldr r2, [fp, #-20] ;a
add r3, r3, r2 ;a+c
str r3, [fp, #-20] ;a
sub r0, r4
sub r1, fp, #32
bl bar2

ldr r3, [fp, #-24] ;b
ldr r2, [fp, #-32] ;d
add r3, r3, r2 ;b+d
str r3, [fp, #-36] ;e
sub r0, fp, #36
bl bar3

ldr r3, [fp, #-20] ;a
ldr r0, [fp, #-36] ;e
add r0, r3, r0 ;a+e
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The Problem:

Given a set of variables

we need to find a permutation

of the variables such that

the loads and stores are optimized.
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The Placement Problem

Given a set of blocks of memory accesses,

find a placement function that leads to

maximizing the number of

double loads and double stores,

while minimizing the number of inversions.

A decision version of the placement problem is
NP-Complete.

(Reduce it from Hamiltonian path problem.)
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SLA - Stack Location Allocator

Model Extraction

• Find all the candidate pairs (called edges)

of word load/stores.

• For each edge, note the static execution

frequency w.

• For each edge e note the cycle count:

cost[e]=40 if it consists of a pair of loads

and

cost[e]=50, if it consists of a pair of stores.

This information is output to a Integer Linear

Program (ILP) solver to solve.
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Constraint Generation:

In the constraints generated

• Set of variables vars : {1..n}.

• Placement function

f :array{vars × vars} of {0,1}.

If f [v, p] = 1 then variable v has position p.

• For any edge e, if ILP decides to introduce

a LDM/STM then isPair[e]=1.
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The ILP solver needs linear constraints and a

linear objective function.

• Solving the placement problem contributes

to saving cycles in the overall execution.

•Our ILP maximizes an objective function which

approximates the number of saved cycles.

− If two LDRs/STRs are replaced by a LDM/STM

then we save around 40/50 cycles.

− Inversion ⇒ swap registers ⇒ saving reduced

by 3/6 cycles.

s[e] = isPair[e]× w[e]× cost[e]

Objective function:
∑

s[e]
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f is a permutation matrix:

∀v ∈ vars :
∑

p∈vars

f [v, p] = 1

∀p ∈ vars :
∑

v∈vars

f [v, p] = 1

Some other constraints :

• isPair[e] can be set 1, only if e is a valid

edge.

• if f [v1, p1] = 1 and f [v2, p2] = 1 then

diff[v1, v2] = p2 − p1.

• if isPair[e] = 1 then |diff[e]| = 1.
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Constraint Solving

• AMPL to frame the constraints and objective

function.

• CPLEX to solve them.
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Code Transformation

1. Read back the solution.

2. For each instruction do:

• (r = fp+ offset) −→ (r = fp+ offset′)

• Modify all load/store instructions which

have frame pointer as the base register.

3. For each edge e with isPair[e]=1

• Replace the two instructions by LDM/STM.

• Insert an add instruction.

• Insert exclusive-or (eor) instructions if

required.
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foo(){ int a,b,c,d,e;
bar1(&a,&b,&c);
a=c+a;
bar2(&b,&d);
e=b+d;
bar3(&e);
return a+e;

}

var old loc new loc
a fp-20 fp-24
b fp-24 fp-32
c fp-28 fp-20
d fp-32 fp-36
e fp-36 fp-28

Without SLA
ldr r3, [fp, #-28]
ldr r2, [fp, #-20]
add r3, r3, r2
str r3, [fp, #-20]
sub r0, r4
sub r1, fp, #32
bl bar2

ldr r3, [fp, #-24]
ldr r2, [fp, #-32]
add r3, r3, r2
str r3, [fp, #-36]
sub r0, fp, #36
bl bar3

ldr r3, [fp, #-20]
ldr r0, [fp, #-36]
add r0, r3, r0

With SLA
sub r2, fp, #24
ldmia r2, {r2,r3} ;load a,c
add r3, r3, r2 ;a=a+c

str r3, [fp, #-24] ;store a.

mov r0, r4
sub r1, fp, #36 ;&d

bl bar2 ;call

ldmia sp, {r2,r3} ;load b,d
add r3, r3, r2 ;e=b+d

str r3, [fp, #-28] ;store e

sub r0, fp, #28 ;&e

bl bar3 ;call

sub r0, fp, #28
ldmia r0, {r0,r3} ;load a,e
add r0, r3, r0 ;a+e
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• MediaBench: GSM and EPIC

• NetBench: Url, Md5 and IPChains

• Purdue: Classifer and Firewall
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Benchmark characteristics

Benchmark #funcs #lines

GSM 98 8643

EPIC 49 3540

Url 12 790

Md5 17 753

IPChains 76 3453

Classifier 25 2850

Firewall 30 2281

Compile time statistics

Compile time (sec) Xformations
Bench w/o SLA SLA % worse ldrs strs eor

GSM 5.22 5.90 13.5 18 8 6

EPIC 1.34 2.67 99.2 228 30 24

Url 0.25 0.52 108.0 12 4 0

Md5 0.27 0.30 14.8 4 0 0

IPChains 1.69 2.67 58.0 44 14 9

Classifier 2.27 4.73 107.0 26 2 6

Firewall 1.84 2.71 47.3 24 0 6
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Exec time characteristics

Execution time (sec)
Bench w/o SLA SLA % imp

GSM 0.57 0.55 3.6

EPIC 0.65 0.61 6.2

Url 6.32 6.27 0.8

Md5 0.75 0.73 2.7

IPChains 0.23 0.20 15.1

Classifier 2.71 2.70 0.8

Firewall 3.49 3.41 2.4
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Compiling Exec time

Bench Overhead Improvement

GSM 13.5 3.6

EPIC 99.2 6.2

Url 108.0 0.8

Md5 14.8 2.7

IPChains 58.0 15.1

Classifier 107.0 0.8

Firewall 47.3 2.4

bench Transformations %imp
loads stores eor

GSM 18 8 6 3.6

EPIC 228 30 24 6.2

Url 12 4 0 0.8

Md5 4 0 0 2.7

IPChains 44 14 9 15.1

Classifier 26 2 6 0.8

GSM 24 0 6 2.4

27



Conclusion

• Implemented SLA in gcc for StrongARM,

studied the behavior.

• Code generated will always run faster. We

found improvements in the range 0.8-15.1%.

• Performance gained depends mostly on the

number of replacements in the most frequently

executed code.

• As the gap between processor speed and

memory latency continues to widen, such

optimization will be increasingly important.
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Future Work

• Merge SLA with register allocation.

• SLA for global variables.

• Use dynamic weights using profiling.

• Use heuristics and compare with our performance.
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Thanks!
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